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Abstrakt

Jedným z dôležitých problémov fyziky kondenzovaných látok je pochopit’, čo
sa odohráva na pozadí mechanizmov kvantových mnohočasticových systémoch.
Ked’že existuje iba niekol’ko úplných analytických riešení pre tietosystémy, v po-
sledných rokoch bolo navrhnutých niekol’ko numerických simulačných metód.
Spomedzi nich začínajú byt’ populárne práve tie algoritmy, ktoré sú založené na
princípoch tenzorových sietí, a to najmä vd’aka ich aplikovatel’nosti na simulácie
silno korelovaných systémov. Predkladaná práca sa sústred’uje na zovšeobecne-
nie takýchto algoritmov, ktoré využívajú algoritmus tenzorových sietí a zároveň
sú dostatočne robustné na to, aby popísali kritické javy a fázove prechody mul-
tispinových Hamiltoniánov v termodynamickej limite. Na to je však nevyhnutné
zaoberat’ sa so systémami s nekonečne vel’kým množstvom interagujúcich častíc.
Pre tento účel sme si zvolili dva algoritmy, ktoré sú vhodné pre spinové systémy:
Corner Transfer Matrix Renormalization Group a Higher-Order Tensor Renorma-
lization Group. V oboch algoritmoch je základný stav multistavového spinového
systému konštruovaný v tvare tenzorového súčinového stavu. Ciel’om tejto práce
je zovšeobecnit’ tieto dva algoritmy tak, aby bolo nimi možné počítat’ termody-
namické vlastnosti neeuklidovských geometrií. Osobitne budú analyzované ten-
zorové súčinové stavy na hyperbolických geometriách so zápornou Gaussovou
krivost’ou, ale aj na fraktálnych systémoch. Následne budú vykonané rozsiahle
numerické simulácie multistavových spinových modelov. Tieto spinové systémy
boli zvolené pre ich vhodnost’ správne modelovat’základné vlastnosti zložitejších
systémov, akými sú sociálne správanie, neurónové siete, holografický princíp,
vrátane teórie korešpondecie medzi anti-de Sitterovým priestorom a konformnou
teóriou pol’a v kvantovej gravitácii. Táto práca obsahuje nové postupy aplikácie
tenzorových sietí a umožňuje pochopit’ fázové prechody a kvantovú previazanost’
interagujúcich systémov na neeuklidovských geometriách. Budeme sa preto bliž-
šie venovat’ nasledujúcim trom tematickým oblastiam. (1) Navrhneme nový ter-
modynamický model sociálneho vplyvu, v ktorom budeme vyšetrovat’fázové pre-
chody. (2) Na nekonečnej množine geometrií so zápornou krivost’ou klasifiku-
jeme a analyzujeme fázové prechody pomocou vol’nej energie. Zároveň bude
stanovený vzt’ah, ktorý dáva do súvisu vol’nú energiu a Gaussov polomer krivosti.
(3) Navrhneme nový algoritmus založený na tenzorových siet’ach, ktorý umožní
študovat’ fázové prechody na nekonečne vel’kých fraktálnych štruktúrach.

Kl’účové slová:
Klasifikácia fázových prechodov, Kvantové a klasické spinové mriežkové modely,
Tenzorové súčinové stavy, Tenzorové siete, Renormalizácia matice hustoty



Abstract

One of the challenging problems in the condensed matter physics is to understand
the quantum many-body systems, especially, physical mechanisms behind. Since
there are only a few complete analytical solutions of these systems, several nu-
merical simulation methods have been proposed in recent years. Amongst all of
them, the Tensor Network algorithms have become increasingly popular in recent
years, especially for their adaptability to simulate strongly correlated systems.
The current work focuses on the generalization of such Tensor-Network-based al-
gorithms, which are sufficiently robust to describe critical phenomena and phase
transitions of multistate spin Hamiltonians in the thermodynamic limit. Therefore,
one has to deal with systems of infinitely many interacting spin particles. For this
purpose, we have chosen two algorithms: the Corner Transfer Matrix Renormal-
ization Group and the Higher-Order Tensor Renormalization Group. The ground
state of those multistate spin systems in the thermodynamic equilibrium is con-
structed in terms of a tensor product state ansatz in both of the algorithms. The
main aim of this work is to generalize the idea behind these two algorithms in
order to be able to calculate the thermodynamic properties of non-Euclidean ge-
ometries. In particular, the tensor product state algorithms of hyperbolic geome-
tries with negative Gaussian curvatures as well as fractal geometries will be the-
oretically analyzed followed by extensive numerical simulations of the multistate
spin models. These spin systems were chosen for their applicability to mimic the
intrinsic properties of much more complex systems of social behavior, neural net-
work, the holographic principle, including the correspondence between the anti-
de Sitter and conformal field theory in quantum gravity. This work contains novel
approaches in tensor networks and opens the door for the understanding of phase
transition and entanglement of the interacting systems on the non-Euclidean ge-
ometries. The following three topics are investigated by means of the tensor-based
algorithms. (1) A new thermodynamic model of social influence is proposed, and
its phase transition phenomena are studied. (2) The phase transitions are classified
and analyzed by the free energy on an infinite set of the negatively curved geome-
tries. A relation between the free energy and the Gaussian radius of the curvature
is conjectured. (3) A unique tensor-based algorithm is proposed, which enables to
treat the phase transition on infinitely large fractal structures.

Keywords:
Phase Transition Phenomena, Quantum and Classical Spin Lattice Models,
Tensor Product States, Tensor Networks, Density Matrix Renormalization



1. Introduction
The mathematical treatment of the collective behavior of many-body systems is a
highly nontrivial task. Even knowing the underlying laws of microscopic interac-
tions does not guarantee that one can say anything specific about the large-scale
behavior of the studied system. The application of the laws might lead to equa-
tions which are too complex to be solved. Even worse, the difficulty is usually
nested one level deeper, and the Hilbert space is far too large to be treated thor-
oughly. For instance, if considering a system of N interacting particles with the
spin one-half on a discrete lattice, the full description of the ground state only
requires to know 2N complex amplitudes. For more realistic systems (like a tiny
piece of a magnet), the number of particles is N & 1023, which makes number of
the basis states larger than the number of all particles in the observable Universe.

Fortunately, not all states are created equally. Nature seems to prefer sys-
tems with local interactions only (loosely speaking, the nearest and/or the second
nearest particles dominantly contribute to the mutual interactions). Consequently,
the Hilbert space of such interaction-restricted systems gets significantly reduced.
The low-energy states of such systems (with gapped Hamiltonians) constitute only
a tiny corner of all the possible states. Those states satisfy the so-called area law
for the entanglement entropy S , which scales with the surface of a subsystem A,
i.e., S ∼ ∂A (note that the entropy is not proportional to the volume of A).

Therefore, having developed an appropriate tool to solve such systems, which
efficiently represents that tiny corner of the area-law, is to be of a great advantage.
This is certainly the main reason why there is an increasing interest in formula-
tions of suitable numerical algorithms to cope with all those non-trival tasks of
quantum physic. Recently, the tensor networks proved to be the right mathemati-
cal concept, which is powerful enough to yield the correct answers.

The present PhD thesis deals with the phase transition phenomena, where the
area law is not applicable. For this reason, the difficulty of performing the task
dramatically increases. Nevertheless, the tensor network formalism is capable of
representing the entanglement of the systems efficiently and correctly, noticing
that the higher the interaction structure of the underlaying lattice geometry, the
more complex tensor networks have to be constructed. The tensor networks for-
malism in connection with the renormalization group is a right choice to carry out
the numerical calculations with in the thermodynamic limit, N→∞.

Therefore, the underlying topology of the interactions in the system plays a
crucial role in determining the thermodynamic properties of an interacting model.
For simplicity, we focus on multistate spin models, which are the typical candi-
dates for the magnetic systems exhibiting first- and the second-order phase tran-
sitions. Specifically, we are greatly interested in study of the phase transition
phenomena on non-Euclidean lattices, in particular, on hyperbolic surface geome-



Figure 1: The illustration of four typical lattice geometries: (from left to right) the
Euclidean square lattice, the two hyperbolic lattices, and the fractal lattice.

tries, which have an infinite effective spatial dimension (d→∞) with a constant
negative curvature as well as on fractal geometries with the fractional dimensions
1 < d < 2. The four typical examples of the lattice geometry of finite size are de-
picted in Fig. 1, i.e., the Euclidean square lattice (left), two hyperbolic lattices in
Poincaré disk representation (in the middle) and the fractal lattice (right).

One of the main purposes for researching the phase transition phenomena of
spin systems on the non-Euclidean lattice geometries is the fact that these systems
have been found to be neither exactly solvable nor numerically feasible by stan-
dard methods such as Monte Carlo simulations, exact diagonalization, Density
Matrix Renormalization Group, Projected Entangled Pair States, etc. We, there-
fore, proposed generalized numerical algorithms based on the Tensor Network
ideas, to be able to solve the thermodynamic properties of various spin systems
on the hyperbolic and the fractal lattices of infinite sizes. The algorithms reach
a sufficiently high numerical accuracy being sufficient for classifying the phase
transitions including the evaluation of the associated critical exponents. We have
successfully achieved novel results, which have been missing in the theory of solid
state physics, statistical mechanics, quantum information theory, as well as in the
anti-de Sitter space of the general theory of relativity. The results of our studies
have been published in Refs. [10, 11, 17].

The results are briefly summarized into three sections following the most sig-
nificant results of the respective published papers. Section 3 shows the main re-
sults of a multistate spin model, which we have proposed in order to mimic social
behavior of communicating individuals. The proposed thermodynamic model has
been inspired by Axelrod model [1]. Section 2 contains the novel numerical re-
sults of our study based on our analytic derivation of the free energy for an infinite
set of hyperbolic lattice geometries via recurrence relations. The phase transition
on the fractal geometries is analyzed in Section 4. We proposed a fractal lattice,
where the simple Ising model can act. The properties of the fractal lattice enabled
us to construct such a tensor network, which is algorithmically tractable by means
of a modified method called Higher-Order Tensor Renormalization Group.



2. Thermodynamic model of social influence
A classical spin lattice model is considered on the regular two-dimensional square
lattice, where the nearest-neighbor multistate spins can interact. Let σi, j = 0,1, . . . ,
q−1 be a generalized multi-spin with integer degrees of freedom n. The subscript
indices i and j denote the position of each lattice vertex, where the spins are
placed within the X and Y coordinate system on the underlying lattice, i.e., −∞ <
i, j <∞. The interaction term, J, acts between the nearest-neighbor vector spins
θi, j = 2πσi, j/n. Such a system is known as the q-state clock model. The further
generalization of the clock model gives the interaction term J a special attribute,
i.e., extra spins are added. Therefore, additional degrees of freedom to each vertex
are introduced. The position dependent term Ji jk describes the spin interactions J
of the n-state clock model being controlled by an additional q-state Potts model
δ-interactions [21]. The total number of the spin degrees of the freedom is nq on
each vertex i, j.

Finally, our multi-state spin model contains two q-state spins on the same
vertex, i.e., σ(1)

i, j = 0,1,2, . . . ,q− 1 and σ(2)
i, j = 0,1,2, . . . ,q− 1, which are distin-

guished by the superscripts (1) and (2). It is instructive to introduce a q2-variable
ξi, j = qσ(1)

i, j +σ(2)
i, j = 0,1, . . . ,q2−1. The Hamiltonian of our thermodynamic model

has the final form

H =

∞∑
i, j=−∞

1∑
k=0

{
J(1)

i jk cos
[
θ(2)

i, j − θ
(2)
i+k, j−k+1

]
+ J(2)

i jk cos
[
θ(1)

i, j − θ
(1)
i+k, j−k+1

]}
,

noticing that θ(α)
i, j = 2πσ(α)

i, j /q, where

J(α)
i jk = −Jδ

(
σ(α)

i, j , σ
(α)
i+k, j−k+1

)
≡

−J, if σ(α)
i, j = σ(α)

i+k, j−k+1,

0, otherwise.

The superscript (α) can take only two values as described above. The k summation
includes the horizontal and the vertical directions on the square lattice. The Potts-
like interaction J(α)

i jk is represented by a diagonal q× q matrix with the elements
−J on the diagonal.

Thus defined model describes conditionally communicating (interacting) indi-
viduals of a society. The society is modeled by individuals (ξi, j) and each individ-
ual has two distinguished features σ(1) and σ(2). Each feature assumes q different
values (traits). In particular, an individual positioned on {i, j} vertex of the square
lattice communicates with a nearest neighbor, say {i+1, j}, by comparing the spin
values of the first feature σ(1). This comparison is carried out by means of the
q-state Potts interaction. If the Potts interaction is non-zero, the individuals com-
municate via the q-state clock interaction of the other feature with α = 2. The



cosine enables a broader communication spectrum than the Potts term. Since we
require symmetry in the Potts-clock conditional communication, we include the
other term in the Hamiltonian, which exchanges the role of the features (1) and
(2) in our model. In particular, the Potts-like communication first compares the
feature J(2)

i jk followed by the cosine term with the feature α = 1. (Enabling ex-
tra interactions between the two features within each individual and/or the cross-
interactions of the two adjacent individuals is to be studied elsewhere.) The total
number of all the individuals is considered to be infinite in order to detect and
analyze the phase transition when the spontaneous symmetry breaking is present.

In the framework of the statistical mechanics, we investigate a combined q-
state Potts and q-state clock model which is abbreviated as the q2-state spin model.
As an example, one can interpret the case of q = 3 in the following: the feature
σ(1) can be chosen to represent leisure-time interests while the other feature σ(2)

can involve working duties. In the former case, one could list three properties such
as reading books, listening to music, and hiking, whereas the latter feature could
consist of manual activities, intellectual activities, and creative activities, as the
example. The thermal fluctuations, induced by the thermodynamic temperature
T of the Gibbs distribution, are meant to describe a noise hindering the commu-
nication. The higher the noise, the stronger suppression of the communication is
results.

In order to classify the phase transitions of our model, we calculate the parti-
tion functionZ = Tr exp(−H/T ) numerically. The communicating noise is asso-
ciated with the thermodynamic temperature T . The partition function is evaluated
numerically by the CTMRG algorithm [15], which generalizes the Density Matrix
Renormalization Group [20] on the two-dimensional classical spin systems.

Figure 2 shows the case of q = 2 resulting in the four different scenarios of
the order parameter 〈O〉 = Trs{cos[2π(ξ − φ)/q2]ρ̂s} (here, ρ̂s being the reduced
density matrix). These scenarios are depicted by the black circles (φ = 0), the
red diamonds (φ = 1), the blue squares (φ = 2), and the green triangles (φ = 3).
They correspond to the following vertex configurations |↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉,
respectively.

At zero temperature there are three minima of the free energy leading to the
three different complete order parameters 〈O〉 being −1, 0, and +1. There are
four minima of the free energy if 0 < T < Tc,1(q = 2) so that the order parameter
has four different values 〈O〉 = −1 + ε, −ε, +ε, and +1 − ε with the condition
0 < ε ≤ 1

2 . It means the two states share the same free energy minimum when the
order parameter is zero at T = 0 and ε = 0. In the temperature interval Tc,1(2) ≤
T < Tc,2(q = 2), there are only two free energy minima present and the order
parameter pair for φ = 0 and φ = 3 becomes identical as well as the pair for φ = 1
and φ = 2. The only single free energy minimum is resulted at T ≥ Tc,2(q = 2)
when the order parameter is zero, which is typical for the disordered phase. The
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Figure 2: The complete order parameter acting on the q2-state variable ξ exhibits
the presence of the two phase transition temperatures if q = 2 and f = 2. All of
the four reference spin levels (labeled by φ) are displayed after the spontaneous
symmetry breaking occurs.

two temperatures, Tc,1(q = 2) and Tc,2(q = 2), correspond to two distinct phase
transitions of the model,

Let us stress that at the temperatures in between Tc,1(2) and Tc,2(2), the pair
of the site configurations |↑↑〉 and |↓↓〉 is indistinguishable by the complete order
parameter (i.e. the black and green symbols coincide), and the same topological
uniformity happens for the pair of the site configurations |↑↓〉 and |↓↑〉.

Extrapolating the number of the spin degrees of freedom q→∞, a non-zero
phase transition point Tt(∞) is resulted. The three independent extrapolations are
depicted in Fig. 3. All of them resulted in the transition point Tt(∞) ≈ 0.5. We,
therefore, conjectured the existence of the ordered phase below the non-zero phase
transition point Tt(q), which persists for any q ≥ 2.

Our thermodynamic model of the social system exhibits two phase transitions
when q = 2. Using the above-mentioned examples, one can interpret results in the
following: let, for instance, the first feature describe the two activities: ‘reading of
books’ (σ(1) =↑) and ‘listening to music’ (σ(1) =↓), whereas the second two-state
feature involves ‘manual activity’ (σ(2) =↑) and ‘intellectual activity’ (σ(2) =↓).
Both of the phase transitions are continuous separating three phases, which are
classified into (i) the low-noise regime, (ii) the medium-noise regime, and (iii) the
high-noise regime.

(i) In the low-noise regime, the individuals tend to form a single dominant
cluster, where the complete order parameter has four values (three if T = 0 only),
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Figure 3: The there variants of the extrapolated transition temperature Tt(q→∞)
by the power-law fitting (the green long-dashed line), the exponential fitting (the
blue full line), and the inverse proportionality (the red short-dashed line).

see Fig. 2. The statistical probability of forming the dominant clusters is propor-
tional to 〈O〉. If the noise increases and the complete order parameter decreases
to the values of 〈O〉 = 1

2 , the four different clusters are formed, and a final size of
the dominant cluster (chosen be setting the parameter φ) decreases proportionally
to this complete order parameter. (ii) In the medium-noise regime, an interesting
topological regime reveals just two equally likely traits of the individuals. In the
social terms, the pairing of the cultural settings coincides either with (1) the equal
mixture of those individuals who ‘read books’ and ‘do manual activity’ (↑↑) and
the individuals who ‘listen to music’ and ‘do intellectual activity’ (↓↓) or (2) the
equal mixture of those who ‘listen to music’ and ‘do manual activity’ (↓↑) and
those who ‘read books’ and ‘do intellectual activity’ (↑↓). (iii) In the high-noise
regime, the clusters are not significant (the correlation length decreases to zero
if the noise increases), and the individuals behave in a completely uncorrelated
way. By tuning the noise (temperature T ), the formation of the clusters of var-
ious sizes is possible. The inclusion of an external magnetic field (representing
mass media or advertisement) in a specific direction, the social behavior can be
controlled. The only one phase transition of the first order is present for the num-
ber of the traits q > 2, and much richer scale of social behavior is possible being
well-controlled by the external parameter (e.g., by the mass media).



3. Free energy on hyperbolic geometries
The idea of replacing the standard transfer matrix formulation of classical spin
systems by the alternative corner transfer matrix method originates in Baxter’s
proposal of treating spin Hamiltonians [2]. The reformulation of Baxter’s analyt-
ical study into the numerical CTMRG algorithm was first performed by Nishino
and Okunishi [15, 16], who combined the corner transfer matrix formalism with
the numerically effective Density Matrix Renormalization Group method [20]. In
2007, the CTMRG algorithm was generalized and applied to the Ising model on
the pentagonal hyperbolic lattice with the constant coordination number four [18].

The essence of the CTMRG algorithm lies in finding the recurrence relations,
which are used for the extension of the corner transfer matrices. Before we pro-
pose a unified CTMRG algorithm for any classical spin system on the hyperbolic
lattice surfaces, we describe the lattice geometry that is gradually built up by poly-
gons. Let the lattice be made by the regular polygonal tessellation with the con-
stant coordination number. Each lattice geometry is characterized by the Schläfli
symbol (p,q), where p is associated with the regular polygon of p sides (the p-gon
in the following) with the constant coordination number q.

There are three possible scenarios of creating the lattice geometry (p,q) for
the integers p > 2 and q > 2. (1) The condition (p− 2)(q− 2) = 4 gives rise to
the two-dimensional Euclidean flat geometry. In this study, we consider only the
square lattice (4,4), which satisfies the condition, and the remaining triangular
(3,6) and honeycomb (6,3) Euclidean lattices will be studied elsewhere. (2) If
(p − 2)(q − 2) > 4, the infinite set of the hyperbolic geometries can satisfy the
condition. Although such lattices of infinite size define various two-dimensional
curved surfaces, the entire infinite hyperbolic lattice can be spanned in the infinite-
dimensional space only; it is commonly associated with the Hausdorff dimension
which is infinite. None of the hyperbolic lattices can be endowed in the three-
dimensional space. (3) The condition (p− 2)(q− 2) < 4 corresponds to only five
finite-sized spherically curved geometries, which are trivial and are not considered
in the current study.

Each vertex of the infinite (p,q) lattice, built up by the p-gons with the fixed
coordination number q, represents a classical multi-spin variable σ interacting
with the q nearest-neighboring spins. The HamiltonianH(p,q) can be decomposed
into the sum of identical local Hamiltonians Hp acting exclusively on the local
p-gons, which are considered to be the basic elements in the construction of the
entire lattice. In particular, the decomposition of the full Hamiltonian is

H(p,q){σ} =
∑
(p,q)

Hp[σ],

where the sum is taken through the given lattice geometry (p,q) accordingly. The



simplified spin notations [σ] and {σ}, respectively, are ascribed to the p spins
within each local Hamiltonian Hp[σ] ≡ Hp(σ1σ2 · · ·σp) and the infinitely many
spins {σ} of the entire system H(p,q){σ} ≡ H(p,q)(σ1σ2 · · ·σ∞). We consider two
types of the multi-state spin models: the M-state clock model with the local
Hamiltonian

Hp[σ] = −J
p∑

i=1

cos
[
2π
M

(σi−σi+1)
]

and the M-state Potts model

Hp[σ] = −J
p∑

i=1

δσi,σi+1 ,

where σp+1 ≡ σ1 within the p-gon, and where each M-state spin variables σ =

0,1,2, . . . ,M − 1. (Thus, the Ising model is associated with M = 2.) We consider
the ferromagnetic interaction J > 0 to avoid frustration.

Let the Boltzmann weightWB[σ] = exp(−Hp[σ]/kBT ) be defined on the p-
gon of the local Hamiltonian, where kB and T correspond to the Boltzmann con-
stant and temperature, respectively. We use the dimensionless units throughout
this work and set J = kB = 1. In general, the Ising model on the hyperbolic lattices
(p,q) is not exactly solvable, except for special asymptotic cases, on the Bethe lat-
tices, as discussed later. We employ the CTMRG algorithm as a powerful tool to
study the phase transitions numerically on the arbitrary lattice geometries (p,q).
We check the correctness and accuracy of the results by comparing the phase tran-
sition temperatures with the exactly solvable Ising model on the Bethe lattices [2].

The iterative expansion process is formulated in terms of the generalized cor-
ner transfer matrix notation (for details, see Refs. [8, 9, 12, 18]), where the corner
transfer tensors C j and the transfer tensors T j expand their sizes as the iteration
step (indexed by j) increases, i.e. j = 1,2,3, . . . ,k. Having analyzed all the geo-
metrical lattice structures (p,q) of the polygonal tailing, it straightforwardly leads
to the recurrence relations

C j+1 =WBT
p−2
j C

(p−2)(q−3)−1
j ,

T j+1 =WBT
p−3
j C

(p−3)(q−3)−1
j .

The partition function, Z[k]
(p,q), in the final kth iteration step is given by the

configuration sum (or, equivalently, by the trace) of the product of the q corner
transfer tensors, which are concentrically connected around the central spin site
of the lattice [18]

Z
[k]
(p,q) = Tr

[
e−H(p,q)/T

]
= Tr (CkCk · · ·Ck︸       ︷︷       ︸

q

) ≡ Tr (Ck)q.



Let the free energy for any lattice geometry (p,q) be normalized per lattice
spin site to avoid any divergences associated with the thermodynamic limit. The
free energy per site, expressed as a function of the iteration step k, has the form

F
[k]
(p,q) = −

T

N
[k]
(p,q)

lnZ[k]
(p,q) ≡ −

T lnTr (Ck)q

N
[k]
(p,q)

,

The generalization of the free energy calculation for any (multi-state) spin model
on an arbitrary lattice geometry (p ≥ 4,q ≥ 4) is straightforward and requires a
careful graphical analysis of many lattice geometries, which is beyond the scope
of this work for its extensiveness. The free energy per spin for a finite k has the
generalized form

F
[k]
(p,q)

k�1
= −

qT
k−1∑
j=0

n j+1 lnck− j + m j+1 ln tk− j

1 + q
k∑

j=1
(p−2)n j + (p−3)m j

.

The integer functions n j and m j satisfy more complex recurrence relations

n j+1 = [(p−2)(q−3)−1]n j + [(p−3)(q−3)−1]m j ,

m j+1 = (p−2)n j + (p−3)m j .

being initialized by n1 = 1 and m1 = 0.
Having been motivated by the correspondence between the anti-de Sitter spa-

ces and the conformal field theory of the quantum gravity physics, one can put
the question: "Given an arbitrary spin system on an infinite set of (p,q) geome-
tries, which lattice geometry minimizes the free (ground-state) energy?". This is
certainly a highly non-trivial task to be explained thoroughly. Nevertheless, we
attempt to answer the question in the following for a particular set of curved lat-
tice surfaces we have been considering. This helps us give an insight into the
role of the space geometry with respect to the microscopic description of the spin
interacting system. Although we currently consider the free energy of the classi-
cal spin lattice systems, we have been recently studying the ground-state energy
of the quantum spin systems on the lattices (p ≥ 4,4), which also exhibit quali-
tatively identical features as studied in this work [5, 6]. For this reason, the free
energy for classical spin systems and the ground-state energy of quantum spin
systems are mutually related.

The free energy per site F [∞]
(p,q) converges to a negative value F [∞]

(p,q) < 0 at finite
temperatures T < ∞ in the thermodynamic limit. Scanning the entire set of the
(p ≥ 4,q ≥ 4) geometries, we show in the following that the free energy per site
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Figure 4: The free energy per site as a function of the lattice geometry (p,q) at the
selected lower temperatures T = 1,2, and 3.

reaches its minimum on the square lattice only

F
[∞]
(4,4) = min

(p≥4,q≥4)

{
F

[∞]
(p,q)

}
at any fixed temperature T . For clarity of the figures, we plot the shifted free
energy per site, F [∞]

(p,q)−F
[∞]
(4,4) ≥ 0.

Figure 4 shows the shifted free energy for the Ising (M = 2) model. These nu-
merical calculations unambiguously identify the square lattice geometry, which
minimizes the free energy per spin site. It is worth to mention that the existence
of the phase transition does not affect the free energy minimum observed on the
Euclidean square lattice. Moreover, as the temperature grows, the difference be-
tween the free energies on the square and the hyperbolic lattices weakens.

The studied (p,q) lattices can be exactly characterized by the radius of Gaus-
sian curvature [14], which has the analytical expression

R(p,q) = −
1

2arccosh
[

cos
(
π
p

)
sin

(
π
q

) ] .
For later convenience, we include the negative sign in R(p,q). The radius of curva-
ture for the square lattice geometry (4,4) diverges, R(4,4)→−∞, while the remain-
ing hyperbolic lattice geometries (p,q) are finite and non-positive. The analytical
expression for R(p,q) results in a constant and position independent curvature at
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Figure 5: The functional dependence of the Gaussian radius of curvature R(q,p)
plotted in the dual lattice geometry (q, p).

any position on the infinitely large lattices (p,q). It is a consequence of the con-
stant distance between the lattice vertices for all geometries (p,q), which is equiv-
alent to keeping the spin-spin coupling to be J = 1 in all the numerical analysis of
the spin systems on the (p,q) lattices.

In Fig. 5 we plot the radius of curvature in the dual geometry (q, p), i.e., the
roles of p and q are swapped. It is immediately evident that the surface shape
of R(q,p) exhibits a qualitative similarity if compared to the free energy per site
F

[∞]
(p,q) we depicted in Fig. 4. Such a surprising observation opens new questions

about the relation between the energy at thermal equilibrium and the space (lattice)
geometry, which is equivalent to the relation between the ground-state energy of
quantum systems and the underlying geometry.

It is instructive to inspect the asymptotic behavior of R(q,p). If q is fixed to
an arbitrary q∗ ≥ 4, the logarithmic dependence on p is present and R(q∗,p�4) →

−1/2ln[2p
π cos( πq∗ )]. Fixing p to p∗ causes that the radius of curvature converges

to a constant so that for a sufficiently large p∗, the constant does not depend on
q and R(q�4,p∗)→−1/2ln[ 2

sin(π/p∗) −
sin(π/p∗)

2 ] ≈ −1/ ln(2p∗
π )2. It is straightforward

to conclude that the asymptotics of R(q,p) is solely governed by the parameter p,
i.e. R(q�4,p�4)→−1/2ln(2p

π ).
We conjecture the following asymptotic relation between the free energy per

site and the radius of curvature on the dual lattice geometry

F
[∞]
(p,q)−F

[∞]
(∞,q) ∝

∂

∂p
R−1

(q,p) ≈ −
π

2
exp

[
1
2
R−1

(q,p)

]
,
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Figure 6: The rescaled phase transition temperatures with respect to p and q are
shown in the dual geometry (q, p) to emphasize the similarity with the radius of
Gaussian curvature in Fig. 5.

which is valid for any fixed q ≥ 4 and p� 4 (typically p & 102) at low tempera-
tures. Necessity to perform other studies is inevitable to support our findings. The
consequences of the current work are expected to elicit further research, which
can bridge the quantum physics with the general theory of relativity.

Having analyzed the phase transition temperatures T (p,q)
pt of the Ising model

with respect to the lattice geometries (p,q), we again find another analogous rela-
tion for the scaling of the radius of Gaussian curvature

−1/ ln
[
T (p,q)

pt

]2
∝ R(p,q)

as shown in Fig. 6. For the better visual comparison with Fig. 5, we plotted
−1/[2 lnT (p,q)

pt ] in the dual geometry (i.e., the meanings of p and q are swapped in
the graph). Recall that the higher values of the coordination number q (for fixed
p) cause that T (p,q)

pt ∝ q, whereas if p increases (at fixed q), the fast convergence
to 2/ ln[q/(q−2)] is achieved.

Hence, the evident mutual similarity of the functional p,q-dependence among
the free energy per site in Fig. 4, the radius of the Gaussian curvature in Fig. 5, and
the phase transition temperature in Fig. 6 leads us to conjecture that a theoretical
explanation should exist, which connects them all together. Or, in other words, our
findings call for the necessity to formulate an appropriate theoretical background.



4. Fractal geomeries
Compared with critical phenomena on regular lattices, much less is known on
fractal lattices. For example, the Ising model on the Sierpinski gasket does not ex-
hibit phase transition at any finite temperature, although the Hausdorff dimension
of the lattice, dH = ln3/ ln2 ≈ 1.585, is larger than one [7, 13]. The absence of
the phase transition could be explained by the fact that the number of interfaces,
i.e. the outgoing bonds from a finite area, does not increase when the size of the
area is doubled on the gasket. In case of the Ising model on the Sierpinski car-
pet, presence of the phase transition is proved [19], and its critical indices were
roughly estimated by Monte Carlo (MC) simulations [4]. It should be noted that
it is not easy to collect sufficient number of data plots for finite-size scaling [3] on
such fractals by means of MC simulations due to the exponential increase of the
number of sites in a unit cell of the fractal.

The classical Ising model is investigated on a planar fractal lattice, as shown in
Fig. 1(right). The fractal lattice consists of the vertices around the lattice points,
which are denoted by the empty dots in the figure, where the Ising spins are placed.
The whole lattice is constructed by recursive extension processes, where the linear
size of the system increases by the factor of four in each step. If the lattice is a reg-
ular square one, 4×4 = 16 units are connected in the extension process, whereas
only 12 units are connected on this fractal lattice; the 4 units are missing in the
corners. As a result, the number of sites contained in a cluster after n extensions
is Nn = 12n, and the Hausdorff dimension of this lattice is dH = ln12/ ln4 ≈ 1.792.
The number of outgoing bonds from a cluster is only doubled in each extension
process since the sites and the bonds at each corner are missing. If we evaluate
the lattice dimension from the relation M = Ld−1 between the linear dimension L
and the number of outgoing bonds M, we have d = 1.5. It is so because M is pro-
portional to

√
L on the fractal. Remark that the value is different from dH ≈ 1.792.

We report the critical behavior of the Ising model on the fractal lattice when
the system size is large enough. Thermodynamic properties of the system are
numerically studied by means of the Higher-Order Tensor Renormalization Group
method [22]. The spin system exhibits a single order-disorder phase transition,
where the critical indices are different from the square-lattice Ising model.

Figure 7(left) shows the temperature dependence of the specific heat per site
c(T ) = −T∂2

T f (T ), where f (T ) is the free energy per site in the thermodynamic
limit, i.e., f (T ) = limn→∞−12−nkBT lnZ. (Here, n is number of the renormal-
ization steps corresponding to the lattice expansion and kB being the Boltzmann
constant.) It is interesting to point out that there is no singularity in c(T ) around
its maximum. However, one can find a weak non-analytic behavior at Tc ≈ 1.317,
which is marked by the vertical dotted line in the figure; the numerical derivative
of c(T ) with respect to temperature (plotted in the inset) exhibits a sharp peak at
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Figure 7: Left: The specific heat c(T ) per site. Inset: the numerical derivative of
c(T ) with respect to temperature; a sharp peak is observed at Tc ≈ 1.317. Right:
The spontaneous magnetization per site m(T ). Inset: the power-law behavior be-
low Tc = 1.31716.

the critical temperature Tc, which correspond to the second-order phase transi-
tion. It is numerically difficult to detect the critical exponent α (associated with
the specific heat) precisely because of the weakness in the singularity.

Figure 7(right) depicts the spontaneous magnetization per site m(T ). Since the
fractal lattice is inhomogeneous, the value is weakly dependent on the location of
the observation spin site, but the critical behavior is not affected by the location.
The numerical calculation captures the spontaneous magnetization m(T ) below
Tc since any tiny round-off error is sufficient for breaking the symmetry inside
low-temperature ordered state. Around the transition temperature, the magneti-
zation satisfies a power-law behavior m(T ) ∝ |Tc −T |1/73, where the precision of
the exponent can be read out from the inset as a tiny deviation from the linear
dependence (the dashed lines) in m(T )1/β near Tc. The calculated spontaneous
magnetization m(T ) also supports the 2nd order phase transition with the expo-
nent βfractal ≈ 1/73, which is smaller by one order of magnitude than the critical
exponent βsquare = 1/8 of the square-lattice Ising model.

The lattice geometry of the fractal lattice can be modified in several manners.
For example, one can alternate the system extension process of the fractal for
the purpose of modifying the Hausdorff dimension; for every odd n the extension
with 12 vertices shown in Fig. 1(right) is performed, and for even n the normal
extension with 16 vertices on the square-lattice is performed. Alternatively, one
can also modify the basic cluster, in such a manner as introducing 6 by 6 cluster
where 4 corners are missing, etc. These modifications do not spoil the applica-
bility of the numerical method used. Our further study can clarify the role of the
entanglement in the universality of the phase transition.
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