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Abstract
Quantum Hamiltonian Complexity is a field on the boundary of Condensed matter
physics and Theoretical computer science. Condensed matter physics provides and
motivates the relevant models and Computational complexity theory and Quantum in-
formation processing bring us powerful tools and new vantage points to study them.
Bringing these together, our goal is to study, understand, and classify both the difficulty
of computing and the structure of global properties of physical systems described by
models with local interactions. The central topics are local Hamiltonians, their ground
states, and their properties — for example determining the ground state energy as in the
local Hamiltonian problem. In this thesis, we study where the intrinsic complexity of
local Hamiltonians and their ground states comes from. We then explore its limitations,
as a slight change of parameters can possibly make a simple looking system difficult
to deal with computationally. We focus on the properties of these difficult instances,
types of quantum (ground) states that can serve as proofs, and scaling of entanglement
in ground states.

First, focusing on the QMA-complete instances (believed to be intractable even for
quantum computers) of the local Hamiltonian problem, we improve its precision param-
eter. Studying the hard constructions further, we provide an efficient way to achieve a
higher overlap with the desired states for QMA-complete constructions as well as for
the dynamic Feynman-like Hamiltonian Computer.

Second, exploring what one can verify from classical and quantum witness states,
we find a way how to shorten long classical witnesses for the quantum, naturally QCMA-
complete Ground state connectivity problem, provided we have two copies of quantum
witnesses. The price we pay is a polynomial decrease in the completeness-soundness
gap. This result is inspired by shorter unentangled proofs for classical NP-complete
problems.

Third, we study what is the possible amount of entanglement for ground states of
translationally invariant spin chains with low local qudit dimension. Exploring the rela-
tionship between the spectral gap and entanglement entropy and spin chain parameters,
we find that our exactly solvable Pair-flip model achieves a power law area law violation
for a qutrit (spin-1) chain with an inverse polynomial gap. We build our construction on
formal languages and intriguing combinatorial structures.
Keywords: computational complexity, quantum computation, Hamiltonian complex-
ity, local Hamiltonians, ground state complexity



Abstrakt
Zložitost’ Kvantových Hamiltoniánov je výskumná oblast’ na hraniciach fyziky tuhých
látok a teoretickej informatiky. Fyzika tuhých látok nám dodáva a motivuje podstatné
modely, zatial’ čo teória výpočtovej zložitosti a spracovanie kvantovej informácie priná-
šajú silné nástroje a nové pohl’ady na ich štúdium. Spájajúc ich, naším ciel’om je skú-
mat’, porozumiet’, a klasifikovat’ zložitost’ výpočtov a štruktúr globálnych vlastností
fyzikálnych systémov popísaných modelmi s lokálnymi interakciami. Centrálnymi té-
mami sú lokálne Hamiltoniány a vlastnosti ich základ-ných stavov, napríklad určenie
základnej energie vo výpočtovej úlohe nazvanej Lokálny Hamiltonián. V tejto práci
študujeme, odkial’ sa berie prirodzená zložitost’ lokálnych Hamiltoniánov a ich základ-
ných stavov. Skúmame limity tejto zložitosti, ked’že aj malá zmena parametrov môže
zmenit’ jednoducho vyzerajúci systém na taký, ktorý je t’ažko výpočtovo zvládnutel’ný.
Zameriavame sa na vlastnosti týchto t’ažkých prípadov, typy kvantových (základných)
stavov, ktoré môžu slúžit’ ako dôkazy, a nakoniec škálovanie previazania v základných
stavoch.

Najprv sa zameriame na QMA-úplné prípady (výpočtovo pravdepodobne nezvládnu-
tel’né aj pre kvantové počítače) varianty úlohy Lokálny Hamiltonián a vylepšíme jej
parameter presnosti. Ďalším štúdiom výpočtovo t’ažkých QMA-úplných konštrukcií
ponúkneme efektívny spôsob zvýšenia prekryvu s ciel’ovými stavmi, ako aj pre dynam-
ickú verziu s kvantovým počítaním s Hamiltoniánmi podobnými tomu Feynmanovmu.

Druhá skupina výsledkov vychádza zo skúmania, čo sa dá overit’ pomocou kla-
sických a kvantových stavov – dôkazov. Nájdeme spôsob, akým skrátit’ dlhé kla-
sické dôkazy pre kvantovú, prirodzene QCMA-úplnú úlohu Prepojenia priestoru základ-
ných stavov (Ground state connectivity), pomocou dvoch nepreviazaných kópií kvan-
tových dôkazov. Cena, ktorú za to zaplatíme je polynomiálne zmenšenie medzery medzi
úplnost’ou a bezpečnost’ou úlohy. Tento výsledok je inšpirova-ný krátkymi neprevi-
azanými kvantovými dôkazmi pre klasické NP-úplné úlohy.

Nakoniec študujeme, kol’ko previazania je možné nájst’ v základných stavoch trans-
lačne invariantných spinových ret’azcov s malou lokálnou dimenziou. Skúmajúc vzt’ah
medzi spektrálnou medzerou, entropiou previazania a parametrami spinových ret’az-
cov, ukážeme, že náš presne riešitel’ný Pair-flip model preukazuje mocninové naruše-
nie zákona plochy pre ret’azec qutritov (spin-1) s inverzne polynomiálnym škálovaním
medzery v spektre. Naša konštrukcia je založená na formálnych jazykoch a zaujímavých
kombinatoriálnych štruktúrach.
Kl’účové slová: výpočtová zložitost’, kvantové počítanie, zložitost’ Hamiltoniánov,
lokálne Hamiltoniány, zložitost’ základných stavov
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Introduction & Goals
The advent of the digital information age brought along not only enormous progress in
what we can calculate and simulate, but also deep questions about computational com-
plexity. What computational tasks are treatable with our limited computing ability? If
we can’t manage them ourselves, is there possibly a way to at least verify the correct-
ness of received data or proofs? How do these computational problems relate to the real,
physical world? How does adding quantum mechanics into the range of questions, but
also possible computation treatments change the situation? Nature is quantum, and so
is information [8] — and its processing should be too. Already Feynman envisioned the
importance of quantum computing for simulations of quantum mechanical systems [19]
in the following words:

“Nature isn’t classical, dammit, and if you want to make a simulation of nature,
you’d better make it quantum mechanical, and by golly it’s a wonderful problem,
because it doesn’t look so easy.” — R.P. Feynman

Without this, we are too often severely limited by the exponential scaling requirements
of dealing with systems with ever-increasing size. There has been remarkable progress
[51] in methods of quantum simulation since Lloyd’s proof [35]. Still, even quantum
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computation [40, 1] has its limits in calculating the properties of physical systems. In
this work, we study these limits and powers, focusing on local Hamiltonians and their
ground states. We will showcase their potential for computation, as well as the com-
plexity of their properties.

The goal of the thesis (as stated in the assignment) is: “. . . to better understand and
characterize where this complexity comes from, and what its limits are – when a change
of parameters can turn simple problems about ground state preparation into difficult
ones, the possibilities of using this complexity in proof systems, and to investigate the
complexity of correlations and entanglement in ground states of simple spin systems,
especially frustration-free ones.”

We fulfill these aims by analyzing a set of local Hamiltonian constructions, working
out and understanding the rich structure of their ground (and low-energy) states as well
as the intricacies of unitary evolution with these Hamiltonians.

1 Local Hamiltonians and their Ground States
Quantum Hamiltonian complexity [20, 42, 51] is an intriguing field drawing from both
many-body physics and theoretical computer science. Many-body physics provides
models, while computational complexity theory and quantum information processing
provide tools to study them. The main questions of quantum Hamiltonian complexity
are:

How difficult is to compute the properties of quantum many body systems? Can
we compute them efficiently now, or only if we had a suitable quantum computer, or
are there some fundamental limitations? How “complex” can the ground state or low-
energy states be? How do simulations of these physical systems scale with their system
size?

Condensed matter physics studies emergent properties of matter in its condensed
phase, when the number of constituents is immense and the interactions between them
are substantial, such as in the solid or liquid phases. They can possibly be described by
huge systems of coupled differential equations coming from their microscopic proper-
ties. To study their properties, they are usually simplified by models derived from mi-
croscopic properties or phenomenologically, based on experimental observations. They
typically have a finite range, but sometimes also interactions decaying over long dis-
tances. The primary purpose of these models is derivation or calculation of global out
of local properties of their constituents and the interactions between them.

In quantum physics, we describe such systems by Hamiltonians. The Hamiltonian
is the energy operator of the system and by a postulate of quantum mechanics spec-
ifies an infinitesimal time evolution via the Schrödinger equation. To study a system
and its properties, the eigenstates (eigenvectors) of the Hamiltonians and their energies
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(eigenvalues) are particularly interesting. The quantum nature: “states as superposi-
tions, unitary dynamics, entanglement and correlations” of such systems are manifested
at zero (or close to zero) temperature. Low energy states are interesting from the view-
point of optimization while they can also exhibit unexpected properties like topological
order, quantum Hall effect, superconductivity, superfluidity, and so on.

In this work we consider time independent spin Hamiltonians with local interac-
tions. Local for us basically means few-body, and when the particles sit on a lattice,
it also means geometrically local. A few simple examples are [47]: quantum Ising or
Heisenberg models in a transverse field used to study magnetic properties of matter.
A more complicated example is the Hubbard model, for studying metallic and non-
metallic properties of matter. In general, the models are sums of local interacting terms
H =

∑
j Hj , where each Hj is a Hermitian term acting nontrivially on at most a con-

stant k number of sites (qudits), and we call them k-local Hamiltonians [30].
There is an interesting connection between local Hamiltonians and canonical prob-

lems from computer science. To give an example, consider a classical antiferromagnetic
spin Hamiltonian on the following interaction graph:

Thanks to the antiferromagnetic interaction, the states with low energy tend to have
interacting spins oriented in opposite directions. In general, the question about the
ground state and its energy is in fact identical to the question about what is the best
configuration of spins satisfying the most local constraints given by the interactions, i.e.
optimizing a global property over local constraints. In the given example we cannot
satisfy all the constraints at the same time, since it contains a cycle of length 3, where
at least one of the constraints will always be unsatisfied; altogether, we can satisfy at
most all but one constraint. This type of frustration and dificulties in deciding what is
the best way to go can be found between some canonical problems from complexity
theory such as satisfiability, constraint satisfaction, or MAX-SAT. There, we also ask
whether one can fulfill a set of local constraints (or in its optimization variant: what is
the maximum number of them we can fulfill). In general, we do not know an efficient
algorithm for those problems, and the best what one can do so far (up to some heuristics)
is to try all possible configurations. However, we do not have a mathematical proof that
an exhaustive search is necessary.

On the other hand, such problems in computational complexity share the following
property. Someone (the prover) could claim that the ground state energy is below some
threshold and he knows the ground state. He could demonstrate this to us by giving
us the ground state. In this example, it would be the best configuration of spins, and
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we would simply plug this witness into the Hamiltonian and easily verify the energy.
Furthermore, some of these problems share the intrinsic difficulty of all such problems.
The situation gets even more exciting if one considers quantum Hamiltonians and a
quantum setting, where we have problems that can be verified in this way on a quantum
computer, given a quantum or a classical witness, tightly related to the structure of
ground states.

In complexity theory [46], we usually simplify the questions to decision problems —
yes/no questions (or promise problems with some promise on both yes and no answers).
The quintessential problem of quantum Hamiltonian complexity is to consider a k-local
Hamiltonian and attempt to determine its ground state energy:

(The k-local Hamiltonian (LH) problem [30], k-LH) Given a k-local Hamiltonian H
over n qudits (system size) and parameters a, b, such that the promise gap: b − a is at
least an inverse polynomial in n. Decide which is the case:

“yes” there exists a state |ψ〉, with a “low” energy 〈ψ|H|ψ〉 ≤ a, or

“no” all possible states have a “high” expected energy 〈ψ|H|ψ〉 ≥ b.

Complexity theory then asks how do the resources — the number of (easy to imple-
ment) steps of an algorithm solving a problem scale asymptotically with the size of its
input in the worse-case scenario. Complexity theory classifies problems into complex-
ity classes that coarse-grain the asymptotic properties and studies relationships between
these classes. The most important for quantum Hamiltonian complexity are the classes
of “efficiently” solvable problems and of problems whose solutions we can at least “ef-
ficiently verify”. Let us begin with the former ones:
P — efficiently solvable on a classical computer — the number of steps scales poly-
nomially with the input size. For example, determining whether a 2-local Hamiltonian
with qubits is frustration-free (there exists a ground state that is a common ground state
of each of the local terms) [10], or finding a ground state of a gapped quantum Hamil-
tonian on a line [33].
BQP — efficiently solvable on a quantum computer. Other problems would be easy
for universal quantum computers — the number of steps or gates scale polynomially.
For some of them, we do not know an efficient classical algorithm, such as a simulation
of a quantum system evolved by a Hamiltonian [35, 19].
Next, we have the classes of problems, whose solutions can be at least efficiently veri-
fied:
NP — when the “yes” answer can be efficiently verified on a classical computer.
For some properties, we do not know an efficient algorithm, neither a classical nor a
quantum one. Is it so that only we did not succeed in finding one, or is there a funda-
mental difficulty in them? For some problems, if someone gives us a proof or a witness
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of the “yes” answer, we can at least verify it in a polynomial time (efficiently). We call
the class of such problems NP. Moreover, some of those problems were proven to be
the hardest within this class and we call them NP-complete. Any problem in this com-
plexity class can be efficiently reduced (in polynomial time) to them. They come from
many areas (e.g. optimization or condensed-matter physics). For such problems we do
not know an efficient algorithm; we do not have a proof that one day someone will not
find one. Still, these problems are widely believed to be “intractable”. They include
tasks such as calculating the partition function or the ground state energy of a 3D Ising
spin glass [6], used to study properties of magnetic alloys with impurities. Furthermore,
we call a problem NP-hard whenever it is at least as hard as the hardest problem within
NP; an NP-hard problem does not have to belong to this complexity class.
Building on the NP complexity class, hardness, completeness, and polynomial time
reductions, let us look at their quantum analogs.
QMA, QCMA — when the “yes” answer can be efficiently verified on a quantum
computer. Other problems have an efficient quantum verifier (using a quantum com-
putation), for either a quantum or a classical proof, QMA and QCMA, respectively.
Examples of QMA-complete problems (the hardest within this complexity class) are:
the 2D local Hamiltonian problem with qubits [41] or 1D LH with qudits of dimen-
sion d ≥ 8 [25]. An example of a QCMA-complete problem is the local Hamiltonian
problem with low-complexity (efficiently preparable) low-energy states [50]. Another
is the ground state connectivity problem [21] (even with a Hamiltonian having commut-
ing terms [22]) about the possibilities of ground space traversal, which we describe in
Section 3.

As usual in complexity theory, we do not have a proof showing those complexity
classes are separated or equal (such results are quite rare); the trivial containments are1

P ⊆ NP ⊆ PSPACE and P ⊆ BQP ⊆ QCMA ⊆ QMA ⊆ PSPACE. Moreover, the
question P

?
= NP is a deep unanswered question of theoretical computer science [2],

related to the existence of efficient cooling procedures for reaching the global energy
minimum in physical systems.

The structure of the ground states is important for the complexity of local Hamilto-
nians. By a simple counting argument, there are way more quantum states then local
Hamiltonians. We can thus ask: Do ground states lay in some “physical corner” of the
whole Hilbert space, possibly with some special structure? Can they be prepared effi-
ciently? We mentioned that the k-LH problem with low-complexity low-energy states is
QCMA-complete. The related question to the structure of states is the QCMA

?
= QMA

open question — are quantum witnesses more powerful then classical ones? More-
over, in 1D, the structure of ground states and the amount of entanglement (measured as
entanglement entropy) greatly varies with the complexity of the local Hamiltonian prob-
lem. The basic gapped systems provably obey an area law [27] limiting the amount of

1PSPACE contains problems solved on a classical computer using polynomial amount of memory.
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entanglement entropy scaling with the boundary of the cut region, and are solvable in P
[33], However, without this restriction on the gap, we quickly see behavior ranging from
NP-complete [45] to QMA-complete [25] ones. We showcase the range of complexity
in the problems we consider in this thesis.

2 Clock constructions in Kitaev’s Hamiltonian and Feyn-
man’s computer

Kitaev’s QMA-hardness circuit-to-Hamiltonian construction for the 5-local Hamilto-
nian problem [30] reduces any QMA verifier (a quantum circuit checking if a witness
is acceptable) to a problem in physics (determine the ground state energy for a system).
This proof established the inherent difficulty of the 5-LH problem, i.e. any problem in
QMA complexity class can be efficiently (in polynomial time) reduced to it (a quan-
tum analogue of the Cook-Levin theorem [46]). In the “yes” case, the whole progress
of an accepting verification |ϕ0〉, U1|ϕ0〉, U2U1|ϕ0〉, . . . , UN · · ·U1|ϕ0〉 is encoded in the
ground state of the constructed Hamiltonian called the history state. It is the uniform
superposition of its steps labeled by ticks of a clock (in the 5-local construction realized
by a domain wall progression):

|Ψhistory〉 =
1√
N + 1

N∑
t=0

|t〉clock ⊗ (UtUt−1 . . . U1|ϕ0〉)data.

Notice that we cannot simply design a local Hamiltonian that would give a high energy
penalty to an improper sequence of progression given by a list of its states, since each
local term in a Hamiltonian “sees” only a constant cut of the whole state and is not
directly sensitive to “global correlations”2[4, 5]. We call such an encoding static — a
computation is “statically” stored in the ground state.

This construction was inspired [30] by Feynman’s Hamiltonian computer [19] per-
forming a quantum computation (a unitary evolution) by a time independent Hamilto-
nian. Feynman [19] realized that finding a Hamiltonian implementing a composition
of elementary quantum gates UN . . . U1 on a system at some particular time T appears
to be difficult (i.e. finding H such that UN . . . U1 = eiHT for possibly noncommuting
U1, . . . , UN ). However, adding a clock system with a program step counter can solve
this issue — combining a Hamiltonian acting on the data together with a clock register.

For instance, Feynman suggested to use a pointer particle (a cursor), like an electron
moving between N + 1 holes on a line, indicating time progression from 0 to N . If a
site t is occupied by the electron and it then moves to the position t+ 1, the Ut+1 gate is

2To see this consider two states 1/
√
2(|0 . . . 0〉 ± |1 . . . 1〉) one can be obtained from the other by

application of Pauli Z gate on one of its qubits, however they have the same reduced density matrices on
all but one qubits [4].

6



applied on the data subsystem. At the beginning, the data subsystem is initialized with
the input state |ϕ〉 and there is a single clock cursor at position 0. If we let the system
evolve for a sufficiently long time and measure the clock subsystem at positionN , which
happens with an average probability Θ(N−1), the data subsystem collapses to the state
UN . . . U1|ϕ〉, the desired final state of the computation. Moreover, the computation can
be implemented locally by Feynman’s Hamiltonian. We call such constructions dynamic
— a computation is “dynamically” performed by the unitary evolution generated by the
(time-independent) Hamiltonian.

The details of how the clock is implemented is a crucial component of both circuit-
to-Hamiltonian constructions and Feynman’s Hamiltonian computer. Here, we present a
collection of our results about clock constructions, tied together by quantum walk tech-
niques. In particular, we are interested in precision requirements for the local Hamil-
tonian problem and the overlap with states that contain the finished computation in the
data register (or the success rate of finding the computation done for the dynamic con-
struction). We improve the analysis of precision requirements — the promise gap — for
Kitaev’s circuit-to-Hamiltonian construction. Second, we increase the number of clock
states for which the computation is done. There, the construction does not involve the
data register and simply “idles the engine”. We do this in a surprisingly spatially effi-
cient way with a tunable success rate for both static and dynamic constructions. First,
we present an idling chain suitable for static construction with a logarithmic number of
idling qubits and then a multi-cog clock approach, a less effective (but still with a sub-
linear number of qubits) usable for the dynamic construction. Finally, we showed how
to use the pulse clock variant (from Feynman’s Hamiltonian for the dynamic version) in
the static construction and improve bounds on its spectral gap. This section is based on
our article [12].

2.1 A new promise gap bound for Kitaev’s QMA-complete local
Hamiltonian

We prove that it is QMA-hard to determine whether the 3-local Hamiltonian problem
has a ground state with energy below Eyes, or all its eigenstates have energy above Eno,
already for Eno − Eyes = O(N−2). This is an improvement from O(N−3) of [30, 38].
Furthermore, this improvement applies also for 4-local frustration-free case of [10]. We
achieve this result by carefully analyzing the soundness part of Kitaev’s QMA-hardness
circuit-to-Hamiltonian construction for the 5-local Hamiltonian problem.

First we build a toolbox by analyzing continuous time quantum walks with tunable
end-point self-loops. Relying on Jordan’s lemma, we characterize the dynamics of the
terms in Kitaev’s Hamiltonian. This lemma says that we can look at them in 1D and
2D invariant subspaces. There, the relevant actions reduce to a quantum walk with one
end self-loop, or (in 2D) two walks on a line connected by a perturbation, see Fig. 1. A
similar result was obtained simultaneously, using a different technique, by Bausch and
Crosson [7].
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Fig. 1: The special cases of walks with endpoint projectors appearing in the proof of
the promise gap lower bound a) in 1D invariant subspaces, and b) in the 2D invariant
subspaces.

2.2 Doing nothing (efficiently) can improve a computation
Could one increase the overlap of the ground state with the finished computation for
Kitaev’s Hamiltonian (i.e. in the history state) or achieve a high success probability for
finding the computation done for Feynman’s Hamiltonian computer? A straightforward
approach to achieve this is to extend the quantum circuit with N gates to N + A gates,
choosing to “do nothing” with the data for A steps at the end of the computation. The
fraction of states with the computation done would then be 1+A

N+1+A
.

We found two ways how to achieve a tunable (high) success rate much more ef-
ficiently, in terms of the number of required extra clock qubits. 1) The Idling chain
— suitable for the static (complexity theory) constructions, with only logarithmic (in
original clock qubit number) extra idling qubits; 2) The Multicog Clock construction —
suitable for dynamic constructions (i.e. actually building a computer), using square root
extra qubits.
The Idling chain This construction extends the original unary clock in Kitaev’s Hamil-
tonian (a progression of states with a single domain wall). For 4 clock steps, the do-
main wall progression would read: |10000〉, |11000〉, |11100〉, |11110〉. We start with
the unary clock of length N , and introduce C extra unary clock qubits. Below these, we
add another row of C idling qubits that are active only if the clock part reached them
and then they can be both 0 or 1, i.e.

1 · · · 1 1 · · · 1 0 · · · 0
0/1 · · · 0/1 0 · · · 0 . (1)

This creates a huge number, exponential in C, of idling states connected by possible
clock progressions, illustrated in Fig. 2. The construction is designed such that the
ground state of the Hamiltonian is the uniform superposition of all the “legal” clock
states described above. The spectral gap of this Hamiltonian is asymptotically lower-
bounded by N−2 for a polylogarithmic idling part C, so it does not destroy the gap
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Fig. 2: An illustration of the possible progression of our Idling chain construction for an
N = 4 computing domain-wall clock and a C = 3 idling part. The original computing
clock connected to the data register has N unary bits (black). The idling part contains
extra C unary bits (blue) and C idling bits (red). Each line corresponds to a projector
onto the antisymmetric combination of the clock states (vertices) coming from the local
terms of the Idling chain Hamiltonian. The graph is a line (the original clock), connected
to the idling part: a line connected to a square, to a cube, and so on.

scaling of the original Hamiltonian without idling. Most importantly, it achieves our
goal: the overlap of the ground state with the finished computation (idling part) can be
made arbitrarily high.

It is not easy to prove that a dynamical version of this construction (with hopping,
instead of projector terms) would perform well for a Feynman-like Hamiltonian com-
puter. We even have some unfavorable numerical results for C = logN idling qubits.
Therefore, we provide another construction for building a computer.
The Multi-cog clock This construction builds on multiple synchronized cog wheels
with cyclic progression, see Fig. 3. For two wheels, it requires a square root extra idling
qutrits (it can also be implemented with qubits) and behaves just like a quantum walk
on a line with a known behavior [29]

Fig. 3: A multi-cog clock construction is made from several synchronized wheels. It is
a generalization of the domain-wall clock on a cyclic structure with multiple levels that
can progress once the previous level revolutions are completed.
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3 Shorter Unentangled Proofs and QCMA

It is natural to ask whether local Hamiltonians can have highly complex ground states,
which cannot be efficiently prepared or even approximated. This is directly related to the
open question QCMA

?
= QMA from complexity theory, i.e. whether quantum witnesses

are more powerful than classical ones. One way to answer that they have the same power
would be, if indeed all ground states of local Hamiltonians were efficiently preparable
on a quantum computer and the classical description of the circuit (the recipe) would be
the witness. On the other hand, even if QCMA = QMA, there still can be some local
Hamiltonians without any efficiently preparable/approximable ground state.

This is why we ask: What can we verify and what can we store/read from n qubits
compared to n classical bits? Do qubits behave more like classical bits or can we
exploit their exponential nature? The Holevo bound tells us that we cannot faithfully
transmit more than n bits of classical information using n qubits. Nevertheless, this tells
us about the amount of information we can communicate or store/retrieve, but what can
we verify from quantum states? Notice that in this case we want to obtain a single bit
of information. Moreover, we want to ask this not only for general states, but states
specifically related to local Hamiltonians (the ground states).

We can take another step and explore what is possible to verify if we have not one
but two copies of a quantum witness. QMA(2) is a complexity class similar to QMA
only with two unentangled witnesses. Thanks to the product test [26], it can be seen as
having two copies of a witness available for verification. It turns out that the promise of
unentanglement between the two copies of the proof (witness) gives the verifier quite a
bit of power — he can check consistency between the proofs, and extract extra informa-
tion from them. Surprisingly, we have seen QMA(2) protocols substantially shortening
witnesses for classical, NP-complete problems [3, 9]. Whereas a similar shortening
without unentanglement would imply a subexponential quantum algorithm for satisfia-
bility of propositional formulas — the SAT problem (with spectacular consequences).

We build on these ideas (quantum witnesses for classical problems) and present
the first QMA(2) protocol with shorter unentangled proofs for a truly quantum prob-
lem. For our protocol, we look at a naturally QCMA-complete problem: Ground state
connectivity (GSCON) introduced by Gharibian and Sikora [21]. This problem asks
a question about the ground (or low-energy) space structure of local Hamiltonians —
whether two low energy states can be connected by a series of local transformations
while not hitting an energy “barrier”, illustrated in Fig. 4. We consider the frustration
free variant and show that it is possible to shorten its proof to two unentangled proofs of
length O(n log n) (notice that a standard QCMA proof is a sequence of local unitaries,
with length polynomial in n) while lowering the promise gap to a small inverse polyno-
mial in n, where n is the system size. We can observe two main shortcomings of our
protocol: a) the shortening is significant only if the original QCMA proof is long and
b) the promise gap becomes very small. Notice that there is not known amplification of
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Fig. 4: An illustration of a ground state connectivity traversal.

the promise gap reusing witnesses [26, 39]. Our protocol should thus serve as a proof
of principle and hopefully serve as an inspiration for other unentangled protocols for
quantum problems or to further explore what is possible to prove with two copies of a
quantum witness. This section is based on our article [14]. We sketch the ideas of our
protocol.

3.1 Shorter unentangled proofs for FF-GSCON
Let us first state the QCMA-complete variant of the frustration free ground state con-
nectivity problem (FF-GSCON) [21].

(FF-GSCON) Given a positive semidefinite frustration-free local Hamiltonian H over n
qubits (system size) and two zero energy frustration-free ground states: source |ψ〉 and
target |φ〉 (represented succinctly via polynomial size quantum circuits) as well as two
parameters m polynomial in the system size n and η inverse polynomial in n. Decide
whether

“yes” there exists a frustration free traversal between |ψ〉 and |φ〉, i.e. there is a se-
quence of 2-qubit unitary gates U1, . . . , Um (we consider them to come from some
universal gate set of at most poly(n) size), such that: Um · · ·U1|ψ〉 ≈ |φ〉 and each
intermediate state |ψj〉 = Uj · · ·U1|ψ〉 is a ground state of H , or

“no” for all such sequences Uj · · ·U1|ψ〉 has expected energy at least η.

The “natural” classical witness for the “yes” answer is the traversal U1, . . . , Um, for
which the verifier can check the required conditions in polynomial-time on a quantum
computer. Observe, that this witness has the size m× the description of gates, which is
asymptotically polynomial in n.

We design a QMA(2) protocol shortening this classical witness to 2 unentangled
quantum witnesses. The length of the quantum witnesses is O(n log n) compared to the
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classical O(poly(n)). Our protocol is inspired by the ideas of Blier and Tapp [9] and
their protocol with short unentangled proofs and an inverse polynomial promise gap for
graph 3-coloring.

In our QMA(2) protocol the verifier asks the prover for two copies of witnesses (i.e.
4 unenetangled witnesses; then we utilize the Product test [26] to lower it to 2), together
encoding a cycle of local transformations from |ψ〉 to |φ〉 and back to |ψ〉 illustrated in
Fig. 5:

|U〉 =
1√
2m

2m∑
j=1

|j〉|uj〉 and |S〉 =
1√
2m

2m∑
j=1

|j〉|ψj〉. (2)

There |U〉 encodes the sequence of unitaries (as label and gate registers — the string uj
encodes the gate Uj) and |S〉 encodes the sequence of low-energy states of the traversal
(as label and data).

Fig. 5: A cycle of states |ψ1〉, . . . , |ψm+1〉, . . . , |ψ2m〉, connected via the unitaries
U1, . . . , Um, U

†
m, . . . , U

†
1 .

Observe that both states |U〉 and |S〉 can be given as O(n log n) qubits, where
O(log n) is for the label and n for either a traversed state, or an encoding of a gate. The
cyclic sequence of low-energy states should start with the initial state |1〉|ψ1〉 = |1〉|ψ〉
and contain |m + 1〉|ψm+1〉 = |m + 1〉|φ′〉 in the middle, where |φ′〉 is close to the
target state |φ′〉 ≈ |φ〉. Furthermore, this sequence should obey Uj|ψj〉 = |ψj+1〉 and
U2m|ψ2m〉 = |ψ1〉 at the end, for all Uj from the sequence of unitaries.

We come up with 8 specific tests for the verifier to probabilistically run on. The tests
are designed to give him a reasonable assurance that the state |U〉 contains a nearly uni-
form superposition of the sequence of labeled, computational-basis encoded unitaries,
applying these unitaries to the state |S〉 doesn’t change it, the sequence of states in |S〉
contains each term |j〉|ψj〉 with a significant amplitude, the initial and final states |ψ1〉
and |ψm+1〉 are what we asked for, and that the energy of each state |ψj〉 is low enough.

We prove that, if the answer is “yes” the prover can persuade the verifier about that
with high enough probability, while in the opposite case the verifier has at least a tiny
chance to detect a cheating prover. There remains an inverse polynomial promise gap
between these acceptance probabilities — the difference.
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4 Very Entangled Spin Chains
How entangled can ground states of “simple” local Hamiltonians be? We focus now
on translationally invariant spin chains with low qudit dimension d = 2, 3, 4, . . .. Such
systems might be too restricted to be universal for computation, or even for encoding
a hard problem from the QMA class into its ground state energy. However, they can
still exhibit a surprising amount of correlations and entanglement, in violation of the
area law. We will investigate, how one can achieve this with the lowest possible qudit
dimension, and the highest possible spectral gap.

There is an interesting interplay between the gap and the entanglement entropy for
spin chains. 1D gapped systems provably obey an area law [27] and thus have only
constant entanglement entropy. This property makes them tractable on classical com-
puters [33], or with heuristics like DMRG [49]. On the other hand, systems with a very
small, inverse exponential, gap can have lots of entanglement in their ground states and
manifest an entanglement volume law — the entropy scales with the volume of the cut
region [34, 52].

We will focus on systems where the gap closes with the system size, but slowly, as
an inverse polynomial, going slightly beyond the area law regime. Such systems remind
us of critical systems. For those, in 1D, one would expect logarithmic correction to
the entropy area law, as we have seen in the critical Ising, Heisenberg, or generally
(1+1)D CFT [32, 34, 17] models. On the other hand, we know of two models designed
specifically in order to exhibit volume law entanglement entropy in the ground state,
while having an inverse polynomial gap [28, 24]. However they both have large qudit
dimension (21 and 9) and are not naturally translationally invariant.

Thus, we ask: Can one achieve a similar behavior in models that involve low dimen-
sional qudits, translationally invariant interactions and a unique ground state? Sur-
prisingly, there are spin chains with an inverse polynomial gap, low qudit dimension,
and
√
N entanglement entropy — exponentially more then the logarithmic correction.

Movassagh and Shor [37] showed the colored Motzkin spin chain (extending our col-
orless case [11]) with the half chain entanglement entropy of its unique ground state
exhibits a power law violation of the area law. It is a translationally invariant (in a bulk)
spin chain with boundary conditions, local particle dimension d = 5, and an inverse
polynomial gap. Later, Salberger and Korepin [44, 16] found out that the colored Fred-
kin spin chain achieves similar properties with local particle dimension d = 4 having
next-nearest-neighbor interaction.

In our search for such spin chains we choose to study a restricted class of “rewriting”
Hamiltonians. Their ground states (and overall structure) have beautiful connections to
formal languages and string rewriting rules. These multidisciplinary motivations bring
forth success in our quest: we find the desired entropy scaling described in systems
above, already in qutrit spin chains. We design the new Pair-flip (PF) model, a family of

13



spin chains with nearest neighbor, frustration-free translationally invariant interaction
and an inverse polynomial spectral gap. Already for qutrits, it has a

√
N entanglement

entropy scaling for one of its ground states. Based on partial analytical and numerical
results, we conjecture that this particular ground state can be made unique by adding
a small translationally-invariant perturbation, while retaining the entropy scaling. This
section is based on our preprint article [13] (about the PF model) and some additional
unpublished results.

Let us set the stage. A rewriting Hamiltonian is a Hamiltonian on a line described
by a family of rewriting rules of the form A ↔ B, where A and B are substrings
of the same constant length (they will correspond to the interaction locality). Such a
rule connects two words αAβ and αBβ, where α, β are substrings. We identify qudit
basis states with letters and associate a translationally invariant Hamiltonian (rewriting
interaction3) term with this rule 1/2(|A〉 − |B〉)(〈A| − 〈B|), acting trivially on the rest
of the chain. This interaction splits the whole Hilbert space into invariant subspaces
of states connected by rewriting interactions. The terms energetically prefer uniform
superpositions of the states |αAβ〉 and |αBβ〉. Thus, these Hamiltonians have ground
states that are uniform superpositions of computational basis states connected by their
rewriting rules, one in each invariant subspace. As a last step, we look at using additional
translationally invariant penalizing terms to split the ground state degeneracy. For our
model, we choose those to be projectors onto local (e.g. 2-qudit) computational basis
states.

4.1 The pair-flip model
Our pair-flip model (PF) Hamiltonian is based on a very simple type of rewriting rule:
AA ↔ BB for any two distinct letters A and B. Let us write down the Hamiltonian
first and explore the rich structure these rules can create. The PF model Hamiltonian
reads HPF = HPF

flip + δHPF
cost. The rewriting rules translate into:

HPF
flip =

1

2

N−1∑
i=1

d∑
t=1

∑
t′ 6=t

(|t′t′〉 − |tt〉)(〈t′t′| − 〈tt|)i,i+1, (3)

while the additional cost term favoring neighbors of the same type (pair counting) is:

HPF
cost = −

N−1∑
i=1

d∑
t=1

|tt〉〈tt|i,i+1, (4)

where d is the number of distinct letters and thus local qudit dimension.
What structure can the pair flip rewriting rules create? The rules can indirectly

facilitate “movement” of letters (particles): the letter 1 in the word 122 can “move”
3We could seen this type of interactions in QMA-hardness constructions [30] and also [28].
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two positions to the right by the sequence of pair-flip transitions 122 ↔ 111 ↔ 221.
This allows to spread a pair . . . AA . . . apart into strings such as . . . A . . . A . . . and
create rich nested bracket-like structures similar to Motzkin and Fredkin spin chains.
The ground states of the Motzkin and the Fredkin Hamiltonians can be understood as
a uniform superposition of well-bracketed (in the colored case with different bracket
species) words with and without spaces, respectively. Here is an example of a colorless
Motzkin spin chain ground state (L,R are opening and closing brackets, respectively)
on a 4-spin chain:

|M4〉 = 1/
√

9(|0000〉+ |00LR〉+ |0L0R〉+ |0LR0〉+ |L00R〉
+ |L0R0〉+ |LR00〉+ |LRLR〉+ |LLRR〉).

In the Motzkin and the Fredkin spin chains ground states, the matched particles (brack-
ets) have a dedicated opening/closing part. In contrast to that, nesting in the pair-flip
model is created by the alternating of colors. Intuitively, since the nesting comes from
alternating of colors, on the base level (no nesting yet) we have d choices to increase the
nesting, and on all other levels d − 1 of them — those will have a similar structure as
d − 1 colored well-bracketed words without spaces (Dyck paths). We illustrate this on
examples in Fig. 6. The rewriting term of the PF model HPF

flip (3) splits the Hilbert space

[ ] O ( ( O ) ) [ ] ( [ ] ( ) )

Fig. 6: Examples of fully reducible (balanced) colored words with depicted pairing for
a) Motzkin b) Fredkin c) PF models.

into invariant subspaces of words that can be rewritten into each other. We characterize
those by an irreducible string that can be obtained by subsequent removal of neighbor-
ing pairs (until there is no pair left). Furthermore, we call the invariant subspace with
the empty irreducible string fully reducible and its ground state the PF state. We con-
jecture that the PF state (with some small perturbation) can be make unique by adding
the pair counting cost term, while its high-entanglement properties remain unchanged.
Let us look at the properties of our PF model.
Qubit PF model. Interestingly, the qubit PF model is in fact the Heisenberg XXX
model in disguise (with the cost term XXZ model in a paramagnetic phase near the
(isotropic) ferromagnetic point). Much is already known about this model, its spectral
gap Θ(N−2), and entropy Θ(logN) [48, 31, 43]. Here, we understand analytically what
the pair-counting term does, as it splits the ground state degeneracy with δ = poly−1(N).
The Entanglement Entropy. We use the combinatorial properties of PF words and
their relation to Fredkin model words. Relying on tools from analytical combinatorics,
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we bound both from above and from below the Schmidt coefficients of a half chain cut
by those of Fredkin model ground state. We thus obtain Θ(

√
N) asymptotic scaling

for the d ≥ 3 PF model. Furthermore, this scaling is present also for any significant
two-part cut (with the smaller part) and also for a middle-part cut-out.
An inverse-polynomial gap. We prove an inverse polynomial spectral gap of the PF
model without perturbation for all of its invariant subspaces. We build on our proof for
colorless Motzkin spin chain [11] as well as related results [37, 36].
A unique ground state. Without the cost term, the PF model has a degenerate ground
state — one for each irreducible string of length k. Analytically (for constant-k) and
numerically (for high k growing with n), we show that the former ground state from
the fully-reducible subspace gets a larger energy shift. We conjecture that the cost term
with δ = N−3 (or smaller) selects a unique ground state, while the asymptotic entropy
scaling remains intact. This is demonstrated by our numerical investigation, illustrated
in Fig. 7.

●
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■ ■ ■ ■ ■ ■ ■ ■
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Fig. 7: Differences between the half cut entanglement entropy of unperturbed and per-
turbed qutrit PF model ground state, displayed for various δ-intensities.

Violation of the cluster decomposition property. Similarly to the colored Motzkin
and Fredkin spin chains [16] the qutrit (and higher) PF state has a nonvanishing con-
nected correlation function in the thermodynamic limit (N →∞) and thus violates the
cluster decomposition property. We observed its robustness numerically in the presence
of the pair counting perturbation term splitting the ground state degeneracy.

4.2 1D rewriting Hamiltonians with qubits
As an additional result, we also analyze all 1D (nearest-neighbor interactions) rewriting
Hamiltonians with qubits. We performed our analysis of the entanglement entropy by
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an interesting connection between the matrix product state representation and finite au-
tomata, exactly specifying regular languages [15]. We found out that most of the ground
states of rewriting Hamiltonians with qubits satisfy an area law. However, there are two
of them with logarithmic entanglement entropy (for a particular choice of ground states):
our qubit PF model 00 ↔ 11, and the rule 01 ↔ 10, which is in fact the Heisenberg
XXX model.

5 Conclusion
In this thesis we set out to study the power and limits of quantum computation. Our
main area of investigation were local Hamiltonians and their ground states. We focused
on exploring various parameters that can make computational tasks (e.g. determining
the ground state energy or preparing the ground state or finding its properties) much
more difficult, and understanding this computational complexity. Our motivation was
to discover interesting phenomena that appear already in simple spin systems, and to
test their behavior with respect to the relevant parameters. For example, increasing the
locality of interaction from 2 to 3 [10, 23], increasing the local spin dimension from 2
to 3 [11], allowing for nonlinear geometry [23], varying the scaling of the promise gap
for decision problems in both directions [4, 18], etc., already results in very interesting
emerging properties. Using tools from computational complexity, Hamiltonian com-
plexity, Markov chains, graph theory and analytic combinatorics, we addressed the fol-
lowing three different interconnected topics about local Hamiltonians and their ground
states:

1. Improving the parameters of QMA-hardness and universality constructions with
ground-/eigen- states that encode a quantum computation.

2. The surprising power of quantum proofs thanks to unentanglement.

3. Large entanglement in ground states of low qudit (d ≥ 3), translationally Hamil-
tonians in 1D, beyond the area law regime.

The work has appeared in two published papers [12, 14] and one unpublished, but
already 5-times cited preprint [13]. We believe our results not only tie some loose ends
and open questions about known constructions, but bring a collection of new ideas,
models and open questions that will serve as a basis for ongoing research and quest
for better understanding of the surprising complexity of the ground states of quantum
many-body systems.
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